The effects of disruptions in ribosomal active sites and in intersubunit contacts on ribosomal degradation in Escherichia coli
نویسندگان
چکیده
Although ribosomes are very stable under most conditions, ribosomal degradation does occur in diverse groups of organisms in response to specific stresses or environmental conditions. While non-functional ribosome decay (NRD) in yeast is well characterized, very little is known of the mechanisms that initiate ribosomal degradation in bacteria. Here we test ribosome degradation in growing Escherichia coli expressing mutant ribosomes. We found that mutations in the 16S rRNA decoding centre (G530U and A1492C) and 23S rRNA active site (A2451G) do not lead to ribosomal degradation. In contrast, 23S rRNA mutation U2585A causes degradation of both the large and small ribosomal subunits in E. coli. We further tested mutations in 23S rRNA, which disrupt ribosomal intersubunit bridges B2a and B3. Deletion of helix 69 of 23S rRNA and the point mutation A1912G in the same helix did not destabilize ribosomes, while expression of mutations A1919G in H69 and A1960G in H71 led to degradation of both mutant and wild-type ribosomes. Our results suggest an actively induced mechanism requiring de novo protein synthesis for ribosomal degradation in E. coli, which degrades both structurally inactive and active ribosomes.
منابع مشابه
High Level Expression of Recombinant Ribosomal Protein (L7/L12) from Brucella abortus and Its Reaction with Infected Human Sera
Brucellosis, caused by Brucella spp., is an important zoonotic disease that causes abortion and infertility in cattle and undulant fever in humans. Various studies have examined cell-free native and recombinant proteins as candidate protective antigens in animal models. Among Brucella immunogenes, antigen based on ribosomal preparation has been widely investigated. In this study, the immunogeni...
متن کاملThe Phylogeny of Calligonum and Pteropyrum (Polygonaceae) Based on Nuclear Ribosomal DNA ITS and Chloroplast trnL-F Sequences
This study represents phylogenetic analyses of two woody polygonaceous genera Calligonum and Pteropyrum using both chloroplast fragment (trnL-F) and the nuclear ribosomal internal transcribed spacer (nrDNA ITS) sequence data. All inferred phylogenies using parsimony and Bayesian methods showed that Calligonum and Pteropyrum are both monophyletic and closely related taxa. They have no affinity w...
متن کاملVisualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications.
After the termination step of protein synthesis, a deacylated tRNA and mRNA remain associated with the ribosome. The ribosome-recycling factor (RRF), together with elongation factor G (EF-G), disassembles this posttermination complex into mRNA, tRNA, and the ribosome. We have obtained a three-dimensional cryo-electron microscopic map of a complex of the Escherichia coli 70S ribosome and RRF. We...
متن کاملFunctional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2
Ribosomal protein L2 is a highly conserved primary 23S rRNA-binding protein. L2 specifically recognizes the internal bulge sequence in Helix 66 (H66) of 23S rRNA and is localized to the intersubunit space through formation of bridge B7b with 16S rRNA. The L2-binding site in H66 is highly conserved in prokaryotic ribosomes, whereas the corresponding site in eukaryotic ribosomes has evolved into ...
متن کاملStructure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (Ψ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015